
A Performance Comparison of Linux and a Lightweight Kernel

Ron Brightwell, Rolf Riesen, Keith Underwood
Sandia National Laboratories

�

PO Box 5800
Albuquerque, NM 87185-1110�
rbbrigh,rolf,kdunder � @sandia.gov

Trammell B. Hudson
Operating Systems Research, Inc.

Albuquerque, NM
hudson@osresearch.net

Patrick Bridges, Arthur B. Maccabe
Computer Science Department

University of New Mexico
Albuquerque, NM 87131�
bridges,maccabe � @cs.unm.edu

Abstract

In this paper, we compare running the Linux operating
system on the compute nodes of ASCI Red hardware to
running a specialized, highly-optimized lightweight kernel
(LWK) operating system. We have ported Linux to the com-
pute and service nodes of the ASCI Red supercomputer, and
have run several benchmarks. We present performance and
scalability results for Linux compared with the LWK envi-
ronment. To our knowledge, this is the first direct compari-
son on identical hardware of Linux and an operating system
designed specifically for large-scale supercomputers. In ad-
dition to presenting these results, we will discuss the limi-
tations of both operating systems, in terms of the empirical
evidence as well as other important factors.

1. Introduction

Linux is the preferred operating system of choice for
commodity clusters. In addition to its well-documented use
on small- and medium-sized clusters [18], Linux is making
in-roads on large-scale machines. In particular, while pre-
vious large-scale systems such as ASCI Red [19] used a
custom operating systems for compute nodes (e.g., Cougar
[17]) and commodity UNIX kernels on service nodes, (e.g.,
OSF1[20]) many new large-scale machines are using Linux
on both compute and service nodes (e.g., Sandia National

� Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy under contract DE-AC04-94AL85000.

Laboratories’ Cplanttm cluster [4], Lawrence Livermore Na-
tional Laboratory’s MCR cluster [1], Los Alamos National
Laboratory’s Pink cluster [2], and SGI’s Altix 3000 [14]).

The IBM Blue Gene/L [3] and ASCI Red Storm [5]
machines are the notable exceptions. Both of these sys-
tems plan to use a specialized lightweight operating sys-
tem on compute nodes instead of a commodity operating
system. Red Storm is using a lightweight kernel based on
Cougar, and IBM is using a new, internally developed, high-
performance microkernel. However, both of these systems
plan to use Linux on their service nodes.

Commodity hardware trends are helping Linux. In large-
scale machines of the past, memory was an expensive and
scarce resource. Today, memory is cheap and plentiful. The
footprint of the operating system is much more important
on a 16 MB node than it is on a 2 GB node. Processor cy-
cles are much cheaper as well, especially for commodity
clusters where the performance of the processor relative to
the network is significantly greater. Cluster machines with
significantly fast processors and relatively slower networks
may not need to be highly optimized for delivering the most
processor cycles. We have previously questioned the use of
commodity operating systems in such an environment [15],
primarily on the grounds that commodity operating systems
do not offer the scalability and reproducible performance
found in lightweight kernels. Our research is exploring the
peformance impacts of Linux on non-cluster hardware plat-
forms, but we are also conversely exploring the appropriate-
ness of using lightweight kernels for commodity clusters.
This paper presents our initial empirical results of compar-
ing Linux with a lightweight kernel on a traditional super-
computer in terms of absolute performance, scalability to
large problems, and deterministic performance.

2. Related Work

We are aware of no empirical studies comparing the ap-
propriateness of lightweight kernels to modern commodity
kernels on current-day large-scale supercomputers. Recent
work has compared Windows NT, Linux, and QNX in terms
of the appropriate OS for a cluster [9]. This work contrasts
the feature sets of the various kernels and presents some
single-node OS micro-benchmarks. It does not, however,
look at overall impact operating system structure on appli-
cation performance on a well-balanced architecture, the pri-
mary goal of our work.

A direct predecessor to this work compares OSF1/AD
[20] and SUNMOS [10] on the Intel Paragon using BLAS,
FFT, and NPB [16]; however, there have been significant
advances in commodity operating systems (spurred by the
Open Source movement) as well as commodity micropro-
cessors (e.g., significant increases in the number of TLB en-
tries) since that time. This work revisits the comparison of
lightweight kernels and full featured operating systems by
analyzing Cougar and Linux on ASCI Red.

3. ASCI Red Hardware

ASCI Red [19] is large-scale supercomputer comprised
of more than 4500 dual-processor nodes connected by a
high-performance custom network fabric. Each compute
node has two 333 MHz Pentium II Xeon processors each
with a 16 KB level-1 cache and a 256 KB level-2 cache,
along with 256 MB of main memory, for a total of more
than 9000 processors and more than a terabyte of distributed
main memory. ASCI Red does not in general support global
shared memory; data is shared between nodes using explicit
message-passing.

Each compute node has a network interface, called a
CNIC, that resides on the memory bus and allows for low-
latency access to all of physical memory on a node. The
CNIC interface connects each node to a 3-d mesh network
that provides a 400 MB/s uni-directional wormhole-routed
connection between the nodes; this results in a system bisec-
tion bandwidth that is greater than 50 GB/s. The CNIC in-
terface is capable of sustaining the 400MB/s node-to-node
transfer rate to and from main memory across the entire ma-
chine. This interface appears essentially as two FIFOs on
the system bus; one for transmitting and one for receiving.

4. Cougar for ASCI Red

The compute nodes of ASCI Red run Cougar, a variant
of the Puma lightweight kernel that was designed and de-
veloped by Sandia and the University of New Mexico for
maximizing both message passing throughput and applica-
tion resource availability [17]. Puma was ported by Intel

from the Paragon to ASCI Red, at which time Intel produc-
tized it as Cougar. Sandia continued development of Puma
as a research project while Intel continued to develop and
maintain Cougar specifically for ASCI Red.

4.1. System Structure

Compared to most other operating systems, Cougar is
structurally relatively simple because it was designed ex-
plicitly for high-performance message-passing systems. In
Cougar, all of the resources on a compute node are managed
by the system processor. This is the only processor that per-
forms any significant processing in supervisor mode. The
remaining processor runs application code and only rarely
enters supervisor mode. This processor is called the user
processor. This arrangement produces a slight asymmetry
in the performance of the processors, but it greatly simpli-
fies the structure of the Cougar kernel and maximizes the
processor cycles available to the applications.

Another significant difference between Cougar and most
general purpose operating systems is Cougar maps all avail-
able memory contiguously. This simplifies the implementa-
tion of high performance message passing systems as well
as lowers TLB thrashing; contiguous mapping allows sim-
ple use of TLB superpages, allowing mappings for half of
physical memory to reside in the TLB.

4.2. Networking Support

Cougar uses a simple network protocol built around the
Portals message passing interface [17]. Portals are data
structures in an application’s address space that determine
how the kernel should respond to message passing events.
Portals allow the kernel to deliver messages directly from
the network to the application’s memory. Once a Portal has
been set up, the kernel has all of the information necessary
to deliver a message directly to the application. Messages
for which there is no corresponding Portal description are
simply discarded.

Portals enables low-latency, high-bandwidth mes-
sage delivery in Cougar because the operating system
easily can arrange for incoming message data to be de-
livered directly to application space once the kernel has
pulled the message header from the CNIC FIFO. This al-
lows Cougar to keep pace with the 400 MB/s CNIC
network interface. It is important to note that Portals is rel-
atively straightforward to implement on Cougar because
of its simple memory management strategy; in gen-
eral purpose operating systems with complex memory
management systems and protocol stacks, implementa-
tion of Portals is significantly more challenging.

4.3. Processor Modes

Cougar is not a traditional symmetric multi-processing
operating system. Instead, it supports four different modes
that allow different distributions of application processes on
the processors. The processor mode is determined at run-
time for the processes in a parallel job when the job is
launched. The following provides an overview of each of
these processor modes. More details can be found in [11].

The simplest processor usage mode is to run both the ker-
nel and application process on the system processor. This
mode is commonly referred to as “heater mode” since the
second processor is not used and only generates heat. In
this mode, the kernel runs only when responding to net-
work events or in response to a system call from the ap-
plication process. This mode does not offer any significant
performance advantages to the application process.

In the second mode, message co-processor mode, the
kernel runs on the system processor and the application pro-
cess runs on the user processor. When the processors are
configured in this mode, the kernel runs continuously wait-
ing to process events from external devices or service sys-
tem call requests from the application process. Because the
time to transition from user mode to supervisor mode and
back can be significant, this mode offers the advantage of re-
duced network latency and faster system call response time.
Because of the increased message passing performance, this
mode favors applications that are latency bound.

In the third mode, compute co-processor mode, the sys-
tem processor and user processor both run the kernel and
an application process. However, the kernel code running
on the application processor does not perform any resource
management activities, it simplify notifies the system pro-
cessor when a system call is performed. The advantage of
this mode is that it provides more processor cycles for the
application. However, the two processors are not symmet-
ric since the part of the application running on the shared
system processor will not progress as rapidly as the portion
of the application running on the dedicated user processor.
In order to use this mode, the application typically uses a
non-standard library interface that executes a co-routine on
the application processor; specialized libraries (e.g. BLAS,
OpenMP) have been implemented that make efficient use
of this processing mode. Because of the opportunity to uti-
lize both processors, this mode favors applications that are
compute-bound.

Finally, in the fourth mode, known as virtual node mode,
the system processor runs both the kernel and an application
process, while the second processor also runs the kernel and
a full separate application process. This mode essentially al-
lows a compute node to be viewed by the runtime system as
two independent compute nodes. The asymmetry of com-
pute co-processor mode also exists in this mode, so the ap-

plication process running on the user processor is likely to
receive slightly more processor cycles than the application
process running with the kernel on the system processor.
This mode allows applications to avail of the user proces-
sor more easily, since the application does not need to be
modified to use the non-standard co-routine interface.

5. Linux for ASCI Red

5.1. System Structure

Unlike Cougar, Linux is a general-purpose, interrupt-
driven kernel that supports symmetric multiprocessing. This
makes it relatively easy to port applications to Linux clus-
ters, but makes it somewhat challenging to use in a dedi-
cated high-performance environment. As previously men-
tioned, a variety of projects have supplemented Linux with
support for medium- and large-scale clusters.

As part of this study, we ported the Linux 2.4 kernel to
the specialized compute node hardware as well as the more
general-purpose service node hardware. The diskless com-
pute nodes receive their kernel from the OSF service nodes
via a bootmesh protocol. The Linux bootloader and startup
code were adapted to work with this protocol. All of the
nodes in the machine are connected to a management net-
work that provides serial console access.

On boot, the Linux service node receives its kernel via
bootmesh, then continues to boot RedHat Linux from a di-
rect attached SCSI disk. This provided the entire service
environment for the parallel machine; users could compile
their test codes with gcc and a full UNIX environment. Ad-
ditionally, the service node exports an NFS root filesystem
over the mesh for the diskless compute nodes.

The compute nodes receive their kernels via bootmesh
and then mount their root filesystems over the mesh from
the service node. The runtime environment on the compute
nodes is very sparse – sshd for remote access and enough li-
braries for MPI jobs to run. No other daemons or processes
were running on the nodes.

5.2. Networking Support

As part of our port, we implemented a Linux driver for
the CNIC interface based on an example network driver
(isa-skeleton.c), which implements a ring buffer, inter-
rupt driven network interface. With this driver, Linux can
use TCP/IP to communicate over the mesh—the Linux soft-
ware layer provides all of the higher-level functionality, in-
cluding MPICH 1.2.5.

The IP MTU for the CNIC device was varied between 4
KB (one page) and 16 KB (four pages) with no noticeable
effect on bandwidth. Overall, the network was CPU limited
due to the depth of the TCP/IP stack. For 333 MHz nodes

it was 45 MB/s and only 32 MB/s on the older 200 MHz
nodes. With the faster nodes, this is only 11% of the avail-
able bandwidth and scales almost directly with the clock
rate of the CPU.

To verify that the bandwidth was limited by the IP stack,
a custom raw device was implemented. This achieved 310
MB/s of bandwidth, demonstrating that Linux was capable
of making full use of the mesh even with 4 KB pages. It
is possible that even better performance would be possible
with the 4 MB “superpages” as described in [13].

It is possible to port the Portals message passing layer
to work with the Linux CNIC driver, but this would require
much more time and effort. The memory handling seman-
tics of Linux are much more complex than that of Cougar.
The generality of Linux comes at a cost. Nevertheless, we
are pursuing an implementation or Portals in Linux for the
CNIC.

5.3. Processor Modes

The CNIC driver was modified to support the same com-
putational modes as Cougar (heater, message co-processor
and user co-processor). However, little difference was seen
between the different modes on Linux because the kernel
must handle interrupts from the CNIC driver and perform
TCP processing regardless of the processing mode. Virtual
node mode is essentially “free” since the Linux kernel is an
SMP capable multitasking kernel.

6. Evaluation Codes

6.1. Latency Test

The MPI ping-pong latency test measures the half round
trip time between two nodes with pre-posted received for
various message lengths. Both operating systems have a
clock timer function that provides microsecond accuracy.

6.2. NPB 2.4

The NAS Parallel Benchmarks (NPB) are a collection of
MPI applications that are distilled from real computational
fluid dynamics applications[6]. They all exhibit particular
message passing and computation patterns that stress dif-
ferent parts of the system. The three that we have tested are
Conjugate Gradient (CG), Multi-grid (MG) and Integer Sort
(IS).

The first of these, CG, solves an unstructured sparse lin-
ear system by the conjugate gradient method. It uses the in-
verse power method to find an estimate of the largest eigen-
value of a symmetric positive definite sparse matrix with
a random pattern of non-zeros. CG requires all-to-all com-

munication, so performance depends highly on the perfor-
mance of the network.

The MG benchmark uses a multi-grid method to approx-
imate the solution to a scalar Poisson problem on a discrete
3D mesh. This solution is found by solving approximating
coarse approximations of the problem followed by refining
that solution. It performs a large amount of computation at
the local level, but at coarse approximations may commu-
nicate with distant nodes. Global reductions are also per-
formed after each time step to maintain boundary condi-
tions.

IS generates local random numbers then performs a
bucket sort of the local data. After all nodes have sorted
their data, they all use MPI Alltoallv to exchange region
requests, followed by MPI Rsend’s to exchange the actual
data. The bucket sort algorithm does not make very good
use of locality and stresses the TLB, while the all-to-all
communication stresses the communication layer.

6.3. CTH

The CTH [7] family of codes developed at Sandia mod-
els complex multi-dimensional, multi-material problems
characterized by large deformations and/or strong shocks. It
uses a two-step, second-order accurate finite-difference Eu-
lerian solution algorithm to solve the mass, momentum,
and energy conservation equations. CTH has material mod-
els for equations of state, strength, fracture, porosity,
and high explosives. The production CTH software fam-
ily runs on a variety of computing platforms, from low-end
PC’s to high-end massively parallel supercomputers. It
is used extensively within both the Department of De-
fense and the Department of Energy laboratory complexes
for studying armor/anti-armor interactions, warhead de-
sign, high explosive initiation physics, and weapons safety
issues.

To assess the performance and scalability of CTH, a
three-dimensional simulated problem was designed. This
problem has moving materials filling the entire computa-
tional mesh throughout the simulation time, so load bal-
ancing problems are not evident. A series of calculations
with different problem sizes was performed on 1, 32, and
64 nodes. For each calculation, the problem size was scaled
such that the total number of computational cells allocated
on each node and the resolution of the problem remained
the same, independent of the number of nodes. Each calcu-
lation was repeated a few times so that the average perfor-
mance index was as objective as possible.

7. Performance

The performance results we present are from a 144-node
development system that contains the same hardware as the

production ASCI Red machine.
The performance comparison of Linux and Cougar

yielded interesting results. In the latency test, shown in Fig-
ure 1, Cougar clearly outperforms the Linux implemen-
tation. This is primarily a difference in the underly-
ing message transport. Linux uses MPICH over TCP while
Cougar uses an MPICH derivative over the Portals trans-
port layer. Just as interesting as the performance is the shape
of the curves. Latency measurements on Cougar form an al-
most perfectly straight line scaling with message size. The
same measurements on Linux have significantly more jit-
ter.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

La
te

nc
y

(u
s)

Message Size (bytes)

Linux TCP
Cougar

Figure 1. MPI latency performance.

The three NPB codes illustrate three interesting points
in the comparison space. For each benchmark, the results
are presented in total MOPS (millions of operations per sec-
ond). For CG (Figure 2), Linux slightly outperforms Cougar
on a small number of nodes where communication is a
less significant factor. This result was a bit of a mystery at
first, since there seemed to be little reason for a lightweight
kernel to perform more poorly than Linux; however, we
quickly realized that the application was compiled with a
much newer compiler on Linux than on Cougar. Up to date
tools is an issue for the LWK approach discussed further in
Section 8. As the number of processors increase, however,
scalability issues override the difference in single node per-
formance and Cougar demonstrates significantly better per-
formance.

Figure 3 shows that Cougar and Linux performance is al-
most identical for MG with small numbers of processors. In
this case, differences in the compiler are outweighed by ad-
vantages of the LWK approach. Although communications
issues do not seem to limit MG on Linux at 16, 32, or 64
processors, Cougar begins to have a significant advantage
at 128 processors.

Finally, Figure 4 illustrates that Cougar significantly
outperforms Linux at small numbers of nodes when run-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140

T
ot

al
 M

O
ps

Number of Processors

Cougar
Linux

Figure 2. NPB 2.4 CG performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140

T
ot

al
 M

O
ps

Number of Processors

Cougar
Linux

Figure 3. NPB 2.4 MG performance

ning IS. This application highlights two of the advan-
tages of Cougar: physically contiguous virtual memory
and advanced collective operations. With contiguous mem-
ory, there is drastically lower pressure on the processor’s
TLB. Under Linux, the performance effects of TLB thrash-
ing are clear. This gap only widens as the number of proces-
sors increase because the collective operations (specifically
MPI Alltoall) implemented for ASCI Red are sig-
nificantly better than the default collectives in MPICH
1.2.5.

For each of the NAS benchmarks, Cougar demonstrates
drastically better scalability than Linux. This is unsurpris-
ing since Cougar achieves much better MPI bandwidth and
latency than Linux; however, this should not be considered
a completely unfair comparison. For these tests, Linux and
Cougar run their native messaging layers. Additional work
is underway to add a lighter-weight transport layer to Linux
and port a run-time environment to it.

Figure 5 shows the compute performance of CTH on the
different platforms. The results are presented in total run-
time. This does not include CTH startup overhead, but does

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

T
ot

al
 M

O
ps

Number of Processors

Cougar
Linux

Figure 4. NPB 2.4 IS performance

include communications time on multiprocessor runs. For
this real application, Cougar has a significant performance
advantage at one node and maintains that advantage out to
several processors. Unlike some of the NAS benchmarks,
the scalability difference is not dramatic because CTH is
highly compute bound, spending 90% of the time comput-
ing.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60 70

T
im

e
(s

)

Number of Processors

Linux
Cougar

Figure 5. CTH performance

8. Other Issues

Performance impacts of the operating system may be a
significant issue, but it is not the only issue in choosing a
lightweight kernel approach to the compute node operating
system. For example, the compiler technology and run-time
environment available for an OS can have a far greater im-
pact on application performance than the operating system.
Another important issue is the level of determinism and re-
producibility that the operating system offers. And, poten-

tially most significant, is the level of effort involved in cre-
ating and maintaining an OS for the system.

8.1. Compilers and Run-time

Perhaps the single biggest factor in the time an applica-
tion takes on a given serial node is the compiler technol-
ogy used. This is most prominent when comparing serial
node execution times on Linux and Cougar. In some cases,
Cougar falls behind. We currently believe that the difference
in the compiler and in the version of standard libraries used
are the source of this difference. The compilers for Cougar
simply have not been updated for several years while newer
compilers for Linux are readily available.

Similarly, the version of other system software compo-
nents has not been changed in many years. For example,
Linux is using MPICH 1.2.5 while Cougar is still running
a derivative of MPICH 1.0.12. This is yet another byprod-
uct of differences in the support models for the two oper-
ating systems. Linux is widely used and supported by the
community while ports to Cougar require effort internally.

8.2. Determinism

An interesting and desirable advantage of lightweight
kernels, and Cougar in particular, is a high level of de-
terminism and reproducibility. Simply put, there is virtu-
ally no variability in application execution times on Cougar.
Whether on a serial node or a fixed group of nodes on the
parallel machine, there is significantly less than 1% vari-
ability in the execution time of an application. This sup-
ports application tuning and debugging much better than
comparable commodity operating systems. It also provides
much better support for system software experimentation.
If tests indicate that a system software change yields a 2%
increase in application performance on Cougar, that differ-
ence is statistically significant. In general, the same cannot
be said for commodity operating systems where application
performance can easily range 5% or more across multiple
runs.

8.3. Effort Level

The most controversial issue for comparison is the level
of effort required to develop and maintain an operating sys-
tem for a supercomputing platform. On one hand, the core
of Linux is developed by the open source community. Many
bugs and much experimentation is done to optimize the op-
erating system at no cost to supercomputer owners. In con-
trast, a lightweight kernel, such as Cougar, is often devel-
oped completely in-house.

However, that is not the complete picture. The time
it took to write the original version of the SUNMOS

lightweight kernel for the Intel Paragon is compara-
ble to the the time it has taken to port Linux to ASCI
Red hardware. The current code base of Cougar is only
about 30 thousand lines of code versus 80 thousand
lines of code in Linux (for equivalent core functional-
ity). In fact, the heart Cougar is not much bigger than some
Linux drivers.

There is also a significant amount of effort going into
finding and fixing performance and scalability problems
with commodity operating systems and runtime systems
on large-scale machines. It is debatable whether the effort
spent trying to work around inherent problems in commod-
ity operating systems might be better spent developing and
maintaining a custom operating system that does not have
inherent limitations.

9. Conclusions

With the current data, there is no clear winner between
Linux and Cougar. We do, however, present clear advan-
tages and disadvantages to lightweight kernels on compute
nodes. Preliminary data indicates that the Cougar operating
system scales much better on well balanced hardware than
Linux. Although some would argue that the comparison is
unfair due to differences in the communication layer, it is
important to note that the lightweight communication layer
in Cougar was created by design as an integral part of the
operating system. In that sense, the comparison is “apples
to apples” since both platforms are benchmarked running
their default configurations. In some cases, Cougar also of-
fers improved performance with small numbers of nodes by
reducing TLB thrashing through the use of physically con-
tiguous virtual memory. This is despite the significant disad-
vantage in compiler technology. Finally, Cougar has a dis-
tinct advantage in providing deterministic performance. The
adverse effects of operating systems studied on supercom-
puting platforms[12, 8] do not appear.

Linux, however, does show noticeable performance ad-
vantages over Cougar on some applications when a small
number of nodes are used. Although data is still being
gathered, this is probably due to the newer compilers and
libraries available on Linux. The advantages of using a
widely used and supported operating systems should not
be underestimated. Unless compiler and library updates are
continually funded for a given lightweight kernel, com-
modity operating systems such as Linux will always have
newer, better development environments; however, contrary
to popular belief, the use of Linux is not free. Modern su-
percomputing platforms are not commodity hardware and
thus require a significant development effort just to make
Linux run. Specialized hardware and system configurations
require special drivers and boot mechanisms to be devel-
oped and maintained along with the kernel. Just as impor-

tantly, the focus of Linux is not on high performance scien-
tific computing and so there is seldom a drive to include or
maintain kernel features that are important to the supercom-
puting community.

10. Future Work

To provide a full comparison of Linux and the
lightweight kernel approach, it will be necessary to ad-
dress the current limitations in each test platform. For
Linux, it will be necessary to complete a Portals messag-
ing layer and to port the appropriate run-time environment
(MPI and application launch). This should dramatically in-
crease the network bandwidth that Linux can achieve.
This would be a partial commodity, partial custom ap-
proach to the compute node operating system. In addi-
tion, it would be interesting to experiment with support
for larger pages appearing in the 2.5 development ver-
sion of the Linux kernel. For Cougar, it is important to pro-
vide a more modern set of compilers, libraries, and
run-time environment. These improvements should eas-
ily bring the performance of a single node into parity with
Linux in all cases while retaining the significant wins pro-
vided on some applications.

11. Acknowledgments

We gratefully acknowledge the contributions of the other
members of lightweight kernel research team at Sandia.
Mike Levenhagen, Kurt Ferreira, Marcus Epperson, and
Zhaofang Wen have provided valuable assistance in the col-
lection of this data.

We would also like to express our sincere thanks to
the ASCI Red maintenance team, who provided invaluable
hardware support for our experiments with Linux on the
ASCI Red development systems.

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences (MICS) program of the
DOE Office of Science.

References

[1] http://www.llnl.gov/linux/mcr/.

[2] http://www.lanl.gov/projects/pink/.

[3] N. R. Adiga et al. An Overview of the Blue Gene/L Super-
computer. In In Proceedings of the SC 2002 Conference on
High Performance Networking and Computing, Baltimore,
MD, November 2002.

[4] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson,
M. J. Levenhagen, A. B. Maccabe, and R. E. Riesen. Mas-
sively Parallel Computing Using Commodity Components.
Parallel Computing, 26(2-3):243–266, February 2000.

[5] W. J. Camp and J. L. Tomkins. Thor’s Hammer: The First
Version of the Red Storm MPP Architecture. In In Proceed-
ings of the SC 2002 Conference on High Performance Net-
working and Computing, Baltimore, MD, November 2002.

[6] R. F. V. der Wijngaart. NAS Parallel Benchmarks Version
2.4. Technical report, October 2002.

[7] J. E.S. Hertel, R. Bell, M. Elrick, A. Farnsworth, G. Kerley,
J. McGlaun, S. Petney, S. Silling, P. Taylor, and L. Yarring-
ton. CTH: A Software Family for Multi-Dimensional Shock
Physics Analysis. In Proceedings of the 19th International
Symposium on Shock Waves, held at Marseille, France, pages
377–382, July 1993.

[8] A. Hoise, D. J. Kerbyson, S. Pakin, F. Petrini, H. J.
Wasserman, and J. Fernandez-Peinador. Identifying and
Eliminating the Performance Variability on the ASCI
Q Machine. http://wwwc3.lanl.gov/par_arch/pubs/
QBperf010203.pdf, January 2003.

[9] A. Kavas and D. G. Feitelson. Comparing Windows NT,
Linux, and QNX as the Basis for Cluster Systems. Concur-
rency and Computation: Practice and Experience, 13:1303–
1332, 2001.

[10] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat.
SUNMOS for the Intel Paragon: A Brief User’s Guide. In
Proceedings of the Intel Supercomputer Users’ Group. 1994
Annual North America Users’ Conference, pages 245–251,
June 1994.

[11] A. B. Maccabe, R. Riesen, and D. W. van Dresser. Dynamic
Processor Modes in Puma. Bulletin of the Technical Com-
mittee on Operating Systems and Application Environments
(TCOS), 8(2):4–12, 1996.

[12] R. Mraz. Reducing the Variance of Point To Point Transfers
in the IBM 9076 Parallel Computer. In Proceedings of the
1994 conference on Supercomputing, pages 620–629. IEEE
Computer Society Press, 1994.

[13] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, Trans-
parent Operating System Support for Superpages. In Pro-
ceedings of the Fifth Symposium on Operating Systems De-
sign and Implementation, December 2002.

[14] S. Neuner. Scaling Linux to New Heights: the SGI Altix
3000 System. Linux Journal, (106), February 2003.

[15] R. R. Ron Brightwell, Arthur B. Maccabe. On the Appropri-
ateness of Commodity Operating Systems for Large-Scale,
Balanced Computing Systems. In International Parallel and
Distributed Processing Symposium, 2003.

[16] S. Saini and H. D. Simon. Applications performance un-
der OSF/1 AD and SUNMOS on Intel Paragon XP/S-15. In
Proceedings of the 1994 ACM/IEEE conference on Super-
computing, pages 580–589. ACM Press, 1994.

[17] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma Operating
System for Massively Parallel Computers. In Proceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[18] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A Parallel Work-
station for Scientific Computation . In Proceedings of the

24th International Conference on Parallel Processing, vol-
ume I, pages I:11–14, Boca Raton, FL, August 1995. CRC
Press.

[19] S. R. W. Timothy G. Mattson, David Scott. A TeraFLOPS
Supercomputer in 1996: The ASCI TFLOP System. In Pro-
ceedings of the 1996 International Parallel Processing Sym-
posium, 1996.

[20] R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes, B. Kemp,
J. LoVerso, M. Leibensperger, M. Barnett, F. Rabii, and
D. Netterwala. An OSF/1 UNIX for Massively Parallel Mul-
ticomputers. In Proceedings of the 1993 Winter USENIX
Technical Conference, pages 449–468, January 1993.

